MODEL QUESTION PAPER

MATHEMATICS PAPER I (A)

(Algebra, VecrorAlgebra and Trigonometry) (English Version)

Time: 3 Hrs.

Max. Marks. 75

Note : Question paper consists of 'Three' Sections A, B and C.

SECTION - A

- I. Very short answer questions 10 x 2 = 20 Marks (Attempt all questions) (each question carries 'Two' marks)
- 01. Find the domain of the real valued functions $f(x) = \sqrt{9-x^2}$
- 02 In $\triangle ABC$, D is the mid point of BC. Express $\overline{AB} + \overline{AC}$ in terms of \overline{AD}
- 03. Find the vector equation of the line through the points $2\vec{i} + \vec{j} + 3\vec{k}$ and $-4\vec{i} + 3\vec{j} \vec{k}$
- 04. If $\vec{a} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{b} = 3\vec{i} \vec{j} + 2\vec{k}$, then find the angle between $(2\vec{a} + \vec{b})$ and $(\vec{a} + 2\vec{b})$
- 05. Sketch the graph of sin x in $(0, 2\pi)$
- 06. Find the value of cos²45°-sin²15°
- 07. Show that $\cos h (3x) = 4 \cos h^3 X 3 \cos hx$.
- 08. If $c^2=a^2+b^2$, write the value of 4 s(s-a) (s-b) (s-c) in terms of a and b.

09. Simplify $\frac{(\cos q - i \sin q)^7}{(\sin 2\theta - i \cos 2\theta)^4}$

10. Expand $\cos 4\theta$ in powers of $\cos \theta$

SECTION - B

- II. Short answer questions. Attempt five questions $5 \times 4 = 20$ marks
- $\begin{array}{ll} \mbox{11.} & f:A \to B,g:B \to C; \\ & f = \{(I,\,a),\,(2,\,c),\,(4,\,d),\,(3,\,d)\} \\ & \mbox{ and } g^{\text{-1}} = \{(2,a),\,(4,\,b),\,(1,\,c),\,(3,\,d)\} \\ & \mbox{ then compute } (gof)^{\text{-1}} \mbox{ and } f^{\text{-1}} \mbox{ og}^{\text{-1}} \ . \end{array}$
- 12. Find the cube root of 37-30 $\sqrt{3}$.
- 13. If $x = 1 + \log_a bc$, $y = 1 + \log_b ca$ and $z = 1 + \log_c ab$, then show that xyz = xy+yz+zx.
- 14. By vector method, prove that the diagonals of a parallelogram bisect each other.
- 15. Find the area:of the triangle formed with the points A(1, 2, 3), B (2, 3, 1) and C (3, 1, 2) by vector method.
- 16. Find the solution set of the equation $1 + \sin 2\theta = 3 \sin \theta \cos \theta$
- 17. Show that $\operatorname{Sin}^{-1}\left(\frac{3}{5}\right) + \operatorname{Sin}^{-1}\left(\frac{8}{17}\right) = \operatorname{Sin}^{-1}\left(\frac{77}{85}\right)$ SECTION - C
- III. Long answer questions : (Attempt 'FIVE' questions) 5 x 7 = 35 marks
- 18. If $f : A \to B$ and $g : B \to C$ are bijections, then prove that gof : $A \to C$ is also bijection.
- 19. Using the principle of Mathematical induction show that $1^{2} + (1^{2} + 2^{2}) + (1^{2} + 2^{2} + 3^{2}) + \dots \text{ upto n terms}$ $= \frac{n (n + 1)^{2} (n + 2)}{12}$

- 20. For any vector \vec{a} , \vec{b} ; and \vec{c} , prove that $(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$
- 21. If $A + B + C = 180^\circ$, then show that sin 2A - sin 2B + sin2C = 4 cos A sin B cos C
- 22. In \triangle ABC, show that $\frac{r_1}{bc} + \frac{r_2}{ca} + \frac{r_3}{ab} = \frac{1}{r} - \frac{1}{2R}$
- 23. One end of the ladder is incontact 'with a wall and another end is in contact with the level ground making an angle ' α '. When the foot of the ladder is moved to a distance 'a' cms, the end in contact with the wall slides through 'b' cms. and the angle made by the ladder with the level ground is now ' β ', show that

a = b tan
$$\begin{pmatrix} (\alpha + \beta) \\ 2 \end{pmatrix}$$

24. Reduce the complex numbers 3 + 4 i,

 $\frac{3}{4} (7+i) (1+i), \frac{2(i-18)}{(1+i)^2}, \frac{5(i-3)}{1+i}$ to x+iy form. Show that the four

points represented by these complex numbers form a square in the argand plane.

MODEL QUESTION PAPER MATHEMATICS PAPER - I (B) (Calculus and Co-ordinate Gemetry)

Enalish Version

Time: 3 Hours

Attempt all questions :

Max. Marks. 75

10x2=20 marks

Note: Question paper consists of three sections A, B and C. Section - A (Very short answer type questions)

Each question carries two marks.

- 01. Write the condition that the equation ax+by+c=0 represents a non-vertical straight line. Also write its slope.
- 02. Transform the equation 4x-3y+ 12=0 into slope-intercept form and intercept form of a straight line.
- 03. Find the ratio in which the point C (6,-17,-4) divides the line segment joining the points A(2,3,4) and B(3,-2,2)
- 04. Evaluate $\begin{array}{cc} Lt & \frac{3x-1}{\sqrt{l+x}-1} \end{array}$
- 05. Evaluate $\begin{array}{c} \text{Lt} \\ x \to \infty \end{array} \left(\sqrt{x+1} \sqrt{x} \right)$
- 06. Find the constant 'a' so that the function f given by $f(x) = \sin x$ if $x \le 0$

 $= x^{2} + a$ if 0 < n < 1 is continous at x = 0

- 07. Find the derivative of $\log_{10} x$ w.r.t x
- 08. If $Z = e^{ax}$ sinby then find Z_{ny} .
- 09. If $y = x^2 + 3x + 6$, x = 10, $\Delta x = 0.01$, then find Δy and dy.
- 10. Find the interval in which $f(x) = x^3 3x^2$ is decreasing.

Section - B

(Short answer type questions)

Attempt any five questions. Each question carries Four marks

5x4=20 marks

- 11. Find the equation of locus of a point, the sum of whose distances from (0, 2) and (0, -2) is 6 units
- 12. Show that the axes are to be rotated through an angle of

 $\frac{1}{2} \text{ Tan}^{-1} \left(\frac{2h}{a - b} \right) \text{ so as to remove the } xy \text{ term from the equation} \\ ax^{\text{r}} + 2hxy + by^{\text{r}} = 0 \text{ If } a ≠ b \text{ and through the angle } \frac{\pi}{4}, \text{ if } a = b$

- 13. Show that the origin is within the triangle whose angular points are (2,1), (3, -2) and (-4, 1)
- 14. Show that the line joining the points A (+6, -7, 0) and BC (16, -19, -4) intersects the line joining the points P(0,3,-6) and Q (2,-5, 10) at the point (1,-1,2)
- 15. Find the derivative of tan 2x from the first principles
- A point P is moving with uniform velocity 'V' along a straight line AB. θ
 is a point on the perpendicular to AB at A and at a distance 'l' from it.
 Show that the angular velocity of P about θ is
- 17. State and prove the Eulers theorem on homogeneous functions.

SECTION - C

5 x 7 = 35 marks

- 18. Find the orthocentre of the triangle whose vertices are (5,-2), (-1,2) and (1,4)
- 19. Show that the area of the triangle formed by the lines

$$ax^{2} + 2\gamma xy + by^{2} = 0$$
 and $lx + my + n = 0$ is $\frac{n^{2} - Vh^{2} - ab}{am^{2} - 2\gamma ln + bl^{2}}$

20. Find the angle between the lines joining the origin to the points of intersection of the curve

 $x^{2} + 2xy + y^{2} + 2x + 2y - 5 = 0$ and the line 3x - y + 1 = 0

21. If a ray makes angle $\alpha,\,\beta,\,\gamma,$ and δ with the four diagonals of a cube, show that

$$\cos^{2}\alpha + \cos^{2}\beta \cos^{2}\gamma + \cos^{2}\delta = \frac{4}{3}$$
22. If x ^{logy} = log x then prove that $\frac{dy}{dx} = \frac{y}{x} = \frac{(1 - \log x \log y)}{(\log x)^{2}}$

- 23. Show that the semi-vertical angle of the right circular cone of a maximum volume and of given slant height is Tan⁻¹ $\sqrt{2}$
- 24. If the tangent at any point on the curve $x^{2/3} + y^{2/3} = a^{2/3}$

intersects the co-ordinate axis in A,B, then show that the length AB is constant.

-01 - 11 - 10 - 11 - 10 - 11 - 10 - 10 - 1 - 10 - 10 - 1 - 10 - 10 - 1